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ABSTRACT
In this paper, we propose a target-oriented hybrid directed binary
fuzzer (HDBFuzzer) to solve the vulnerability confirmation problem
based on binary code similarity comparison. HDBFuzzer combines
macro function level direction fuzzing and micro path-constraint di-
rected solving. For some branches with simple or loose constraints,
it still uses directed mutation of the directed fuzzing to penetrate
while for some really hard-to-penetrate constraints, it resorts to
guided concolic execution. At the same time, in order to improve
the efficiency of constraint solving, we propose a constraint solving
method based on “path abstraction”, which approximates the solu-
tion space by the linear expression and generates effective input
utilizing the highly-effective sampling method towards the linear
space. Then, under the guidance by the directed greybox fuzzing,
HDBFuzzer can generate input that can quickly reach the vulner-
able code region and finally crash the program under the test to
confirm the vulnerability hidden in the binary program. We evalu-
ate HDBFuzzer against AFLGo-B and QSYM on LAVA-M dataset
and ten real-world programs, and the results show that HDBFuzzer
is superior to AFLGo-B and QSYM on the bug discovery, bug repro-
duction and target reaching capabilities.
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1 INTRODUCTION
In recent years, binary code similarity matching technology and its
application on the field of vulnerability search have been gradually
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got great attention and made great progress in the industry and
academia, especially in the field of the embedded device firmware
vulnerability search. The basic idea is that given a known vul-
nerability function such as a CVE function and a binary program
under the test (PUT), identify in the PUT the most similar func-
tion to the vulnerability function as the vulnerable function and
verify whether the identified vulnerable function indeed contains
a real vulnerability. The former can be accomplished by binary
code similarity matching tools [1-4]. For the latter, however, the
existing methods are almost based on manual validation, which are
time-consuming and error-prone. Especially in large-scale binary
firmware vulnerability search, it’s almost not realistic to confirm
whether the vulnerable function indeed contains real vulnerability
only just by means of manual analysis one by one.

Fuzzing test [5] is an effective way to find vulnerabilities in a pro-
gram. Traditional Coverage-guided Greybox Fuzzing (CGF) tools
aim to cover as much program state as possible in the given time
budget to find the path that might crash the program. However,
higher coverage doesn’t necessarily mean more vulnerabilities can
be found, as fuzzers will blindly probe all possible program states
rather than focus on the functions that are more likely vulnerable.
Therefore, they are not very effective when applied to vulnerability
confirmation based on binary code similarity detection. Recently,
Directed Greybox Fuzzing (DGF) has been proposed, such as AFLGo
[6] and Hawkeye [7], which focus on driving the testing towards
specific program locations (which are called target sites) and fo-
cus fuzzing on such target sites. Compared with the traditional
CGF, DGF is more suitable for the application scenario of firmware
vulnerability search with binary code similarity matching, if the
location information of the target sites can be obtained. However,
DGF inherits the same inherent defects of the traditional fuzzing
as CGF, that’s to say, it’s difficult to generate test inputs that can
go through the path protected by complex constraints to probe
into vulnerable code regions which can trigger the PUT crashes.
Recent efforts on hybrid fuzzing, such as Driller [8] or QSYM [9],
combine fuzzing and symbolic execution to deeply probe into the
program, taking full advantage of the fuzzing’s high-speed test-
ing capabilities and the symbolic execution’s effective constraint
solving capabilities to generate test inputs that can passthrough
paths protected by complex constraints to trigger the potential
vulnerabilities in the PUT. However, they still focus on achieving
higher code coverage, without the directional guidance of the tar-
get sites, and therefore can’t be directly applied to the binary code
similarity-based vulnerability confirmation problem.

In this paper, a Hybrid Directed Binary Fuzzer (HDBFuzzer)
driven by target site is proposed to solve the vulnerability confir-
mation problem based on the binary code similarity matching. Its
core idea is to use DGF to carry out high-speed fuzzing test towards
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Figure 1: Random Fuzzing vs. CGF vs. DGF.

the target sites, and at the same time, concolic execution is used to
help solving some complex constraints alongside the path to the
target sites so as to generate test inputs that can pass through some
specific branches for DGF to use. Compared to the conventional
hybrid fuzzer, HDBFuzzer is a binary-oriented, target sites-driven,
hybrid directed fuzzer, aiming to generate inputs that can reach the
target sites as quickly as possible so as to focus resources on the vul-
nerable code regions for concentrated testing and confirm whether
there are real vulnerabilities in the vulnerable code regions.

2 BACKGROUND AND MOTIVATION
Automated vulnerability detection can be viewed as the process
of searching the input space of the PUT to identify which input
can trigger a bug. Since the input space of real-world programs is
extremely very large, the goal of the automated vulnerability detec-
tion technology is to search for interesting inputs that can trigger
new program state (new code line or new path) automatically and
intelligently.

2.1 Random Fuzzing vs. CGF vs. DGF
As shown in Figure 1, we divide the automated vulnerability detec-
tion technologies into three categories according to the different
ways of detecting the input space: random fuzzing, CGF and DGF.
Random fuzzing will blindly probe the input space, as shown in
Figure 1(a), they mainly generate new inputs around the initial
seeds, so the new generated interesting inputs (thus the new pro-
gram states detected) are very limited. CGFs aim to cover as many
paths as possible in order to discover as many crashes as possible,
if they exist. However, they are still “blind”, although they provide
feedback as dynamic guidance to determine which inputs are in-
teresting inputs and should be included in the extended corpus.
As special type of CGF, DGFs will specify one or more target sites
(that is, the preferred program location(s) which DGFs will drive
the seeds to, and usually set to the crashing point(s) and its/their
associated location(s)), and then drive the fuzzer towards the target
site(s) as far as possible for concentrated testing. Compared to CGFs,
DGFs will spent most time on detecting the code paths towards the
target site(s) and won’t waste any more resources on the unrelated
paths. Therefore, DGFs are “directed” and “targeted”.

2.2 Hybrid Fuzzing
Although many bugs have been discovered by CGF over the years,
however, there are still situations that the mutation strategy in
CGF does not work. For example, CGF will get stuck on checking
on some magic bytes, and it has been proved that it’s almost im-
possible to generate inputs that can passthrough the magic bytes

just by random mutation. Magic bytes checking can occur in the
very early stage of the program execution, fuzzers can quickly get
stuck and stop generating the interesting inputs to deeply probe
the program path. While systematic methods, such as symbolic or
concolic execution, can systematically detect input space targeting
specific program path and generate inputs that cover these paths
with the help of the Satisfiability Modulo Theories (SMT) solver
[10], despite the performance overhead is very high. As a result,
it’s widely used by the researchers as an aid to the fuzzing, hence
introduces the hybrid fuzzing. Unlike traditional symbolic execu-
tion (SE)/ concolic execution (CE), the SE/CE in hybrid fuzzing will
not probe for branch path, it just solves the constraints, sends the
generated input to the fuzzer, and then, exit. Then the fuzzer will
continue to probe the new input space to discover the bugs hidden
in the deeper codes. In other words, hybrid fuzzing mainly relies on
the fuzzer to probe the program, reducing the frequency of calling
SE/CE, thus alleviating the possible state explosions.

2.3 Analysis of existing tools and our
motivation

Analysis of existing tools. We list some typical DGF and hybrid
fuzzing works in recent years and their technical characteristics in
Table 1. AFLGo [6] first proposed a CFG-based distance to evaluate
the proximity between seed execution and multiple target sites,
as well as a simulated anneal-based energy scheduling. Hawkeye
[7] improved the accuracy by introducing a seed selection heuris-
tic algorithm based on target coverage and self-adaptive mutation.
ParmeSan [11] proposed an accurate dynamic CFG building method
and a two-staged directed fuzzing strategy to effectively guide the
fuzzing to all the targets of interest. FuzzGuard [12] was a deep
learning-based work, which predicted the reachability of the inputs
(i.e., whether the target can be reached) before executing the target
program and then filtered out the unreachable ones to improve the
performance of the fuzzer (that is AFLGo in FuzzGuard). Driller
[8] was the first hybrid fuzzing framework. It used AFL as CGF
and angr for SE interchangeably during the testing. When AFL
can’t generate new interesting inputs in a given time budget, it
will automatically switch to the angr for constraint solving. It can
successfully and easily solve obstacles like magic bytes comparison.
Once the condition check was passed, Driller will restart the fuzzer.
QSYM [9] addressed the performance bottlenecks of existing CEs
by tightly integrating dynamic binary translation and native sym-
bolic execution, making it extensible to discover bugs in real-world
programs.

It can be seen from Table 1 that most of the existing DGFs are
source code-oriented, which need to analyze the source code to ex-
tract the target site(s) and calculate the distance between each seed
and the target site(s) to guide the directed fuzzing in the second
stage. Hybrid fuzzing can be binary oriented, but most of them are
still aiming to improve code coverage, not considering the direct-
ness of the testing. On the other hand, during the actual testing, it
was found that a large number of inputs could not reach the po-
tential buggy code. Even with the most state-of-the-art DGF such
as AFLGo, on average more than 91.7% of the inputs can’t reach
the buggy code [12]. This large number of unreachable inputs will
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Table 1: Summary of Existing Typical DGF and Hybrid Fuzzing Tools

Category Tools Literature Technologies binary Open-source problem solved

DGF AFLGo CCS17 AFL+ simulated anneal no yes directness
Hawkeye CCS18 AFL-like+ simulated anneal no no directness
ParmeSan usesec20 libfuzzer+ no yes directness
FuzzGuard usesec20 AFLGo+ unreachable inputs filtered out no no directness

hybrid FuzzingDriller NDSS16 AFL↔selective symbolic execution yes yes coverage
QSYM usesec18 hybrid fuzzing & dynamic SE yes yes coverage
DrillerGo CCS19-poster hybrid directed fuzzing yes no directness

waste a log of fuzzing time, especially when they are applied to hy-
brid fuzzing. If symbolic execution passes lots of crash-independent
inputs to the fuzzer, the fuzzer will delve into many meaningless
paths, which may be resulting in a vicious cycle causing the fuzzing
queue growing and further greatly wasting system resources and
time budget. The reason behind is that the random mutation in
existing DGF tools makes it difficult to handle complex constraints.
Even in hybrid fuzzing, it’s difficult or even impossible to solve
the input that satisfies the very complex constraints alongside the
program path from the entry point to the buggy code in a given
time budget.

Our Method. In order to overcome the challenges faced by the
existing DGF or hybrid fuzzing tools in addressing problem of the
vulnerability confirmation based on binary code similarity match-
ing, a hybrid directed binary fuzzer HDBFuzzer is proposed in this
paper. Compared with regular hybrid fuzzer, HDBFuzzer is target-
oriented, directed, hybrid binary fuzzer. The goal of HDBFuzzer
is to generate inputs that can reach the target site(s) as quickly
as possible so as to trigger hard-to-reach bugs in the binary and
further verify that the vulnerable code region indeed contains a
bug. Due to the lack of low-level penetration testing on local path
conditions, function-level directed fuzzing may get stuck on some
code and fail to reach the target site(s), so, HDBFuzzer combines
micro path constraint solving and macro function-level directed
fuzzing together to quickly and efficiently generate inputs that
can reach the target site(s). Particularly, instead of blindly solving
all branch constraints, HDBFuzzer will only select those branches
that are really difficult for the fuzzer to break through and submit
them to the concolic execution for constraint solving. Specifically,
branches with simple or loose constraints will be still explored by
fuzzing through directed mutation, while branches that are really
difficult to break through for the fuzzer will be put forward to the
concolic execution. At the same time, to improve the efficiency of
constraint solving, we propose one constraint solving method based
on “path abstraction”. This method will approximate the solution
space of the constraints by linear expressions and generate valid
inputs by means of efficient sampling towards the approximated
linear space. Then it will generate inputs that can reach vulnerable
code regions as quickly as possible under the directed fuzzing, and
eventually generate crashing-inputs, confirming the vulnerability
in the binary, if any.

Figure 2: HDBFuzzer Overview.

3 HYBRID DIRECTED BINARY FUZZER:
HDBFUZZER

The overview of HDBFuzzer is shown in Figure 2. It consists of five
components: target site(s) identification, static analysis, directed
fuzzing, hard constraint solving based on path abstraction and
coordinator. Here, the target site(s) identification is used to identify
the vulnerable code regions (target site(s)) in the target binary. The
static analysis module is used to identify the set of the target path
and the set of the constraints on the target path(s). Directed fuzzing
is used to perform directed greybox fuzzing. The constraint solving
component based on the path abstraction is used to get the solution
of the hard constraints which are indeed hard to break through.
The coordinator is used to coordinate the interaction between the
directed fuzzing and constraint solving.

3.1 Target Site(s) Identification
Given a PUT and a related vulnerability (CVE or patch), the goal
of target site(s) identification is to identify the potential vulner-
able code region, also known as target site(s) in this paper. As
shown in Figure 3, given a CVE and a PUT, we can output the
potential vulnerable target functions through a well-trained neural
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Figure 3: Target Site(s) Identification Process.

network sorted by their similarity scores with the CVE, denoted
as {(func1,score1,address1), (func2, score2, address2), . . ., (funcn,
scoren, addressn)}, where funci, scorei and addressi denote the
vulnerable function, the similarity score between the vulnerable
function and the CVE function and the relative address of the vul-
nerable function in the target binary, respectively. Since we focus on
how to generate the input for reaching the target site(s) as quickly
as possible to confirm there is indeed a true vulnerability around
the target site(s), so we will not illustrate the technical details of
the process of the target site(s) identification too detailly.

Target Path and Constraint Identification.
The process of the target path and constraint identification is

shown in Algorithm 1. It first builds the call graph (CG) of P accord-
ing to the binary program P and its entry point Entrypoint (line
2). Then, for each function in CG, it builds its control flow graph
(CGF, line 4) and inter-process control flow graph of P combing CG
and CFGs (line 5). For each target target in target site(s) T, back-
ward pathfinding will be used on P’s ICFG to find the path from
Entrypoint to the target. In the following process of the constraint
solving based on path abstraction, only when the address of the
hard branched constraint is included in the collected addresses by
the backward pathfinding module gathers here, HDBFuzzer will
solve it.

Algorithm 1 Target path identification algorithm
Input:P : binary program, Entrypoint: entry point, T : target sites
Output: TP: target path
function ExtractTargetPaths(P):
1. TP← { }
2. CG← BuildCallGraph(P, Entrypoint)
3. for each function in CG:
4. CFG← BuildControlGraph(function, function_entry)
5. ICFG← CG + CFGs
6. for each target ∈ T :
7. path← BackSlicking(target, Entrypoint, ICFG)
8. c_p← constraints_on_path(path)
9. TP← TP ∪{path, c_p}
10. return TP

3.2 Complex Constraint Solving Based on Path
Abstraction

When the backward pathfinding module completes the target path
identification, the dynamic analysis module starts to run. The dy-
namic analysis module combines the function-directed fuzzing and
path constraint guided concolic execution in a complementary and
cooperative way. On the one hand, since the directed fuzzing may

be stuck in some complex code and fail to reach the target function,
path constraint solving is introduced to assist the fuzzer to get
through these difficult constraints. On the other hand, different
from blindly solving all the path condition branches, we only select
branches that are really difficult for the fuzzer to break through to
the concolic execution so as to alleviate the possible path explosion
and low performance in solving constraints.

Difficult constraints identification. When the fuzzer gets
stuck, that is, when the fuzzer stops moving forward in a certain
period of time, Dirller [8] will start concolic execution. In its imple-
mentation algorithm, Driller runs AFL as its fuzzing component,
when the pending_favs in AFL drops to 0, Driller considers that it
meets a difficult constraint, then calls concolic execution to solve it.
However, just as DigFuzz [13] mentioned, this “conservative” strat-
egy is problematic because it’s not a good identifier for starting the
concolic execution as fuzzer gets stuck for a period of time, which is
more obvious for the real-world programs, even after testing a few
hours later, pending_favs may not drop to 0. In this case, it will not
call the concolic execution during the fuzzing, that is, the hybrid
fuzzer is degraded to a pure fuzzer. Unlike Driller, QSYM [9] will
synchronize the inputs from the fuzzer with its concolic execution.
However, during the process of testing towards real-world pro-
grams by QYSM, we found that only 25.2% of the inputs generated
by QSYM will be considered interesting and adopted by AFL; the
other 74.8% will be considered uninteresting and discarded. The
reason is that fuzzers like AFL can quickly cover many branches
with loose conditions such as if(x==0x50) or if(x≥56), in which
cases, concolic execution will waste a lot of time on solving these
useless tasks.

In this paper, we select a relative neutral strategy, choosing
the most difficult constraints for he fuzzer to break to concolic
execution to generate inputs that can pass branches protected by
complex and hard constraints, such as magic bytes branches like
if(x=0xdeadbeef) or nested condition branches like if(x+y>10) { if
(x>5). . ..}, so as to reach the target site(s) as quickly as possible. As
stated earlier, only when the address of a branch unit is included in
the addresses collected by the backward pathfinding module and
the fuzzer is unable to break through this branch unit for a period
of time, the directed concolic execution module will be called for
constraint solving.

Constraint solving based on path abstraction. In traditional hy-
brid fuzzing, concolic execution will directly call the constraint
solver to get a feasible solution, which is limited by the perfor-
mance bottleneck of constraint solving, making it difficult to achieve
efficient path detection. Unlike this, we select to construct path ab-
straction on these unsolved branches to approximately describe
the search space of the feasible solutions of all the path constraints
so as to accelerate the solving of the subsequent path constraints.
Specifically, before solving the target constraints, we will first con-
struct the simplified form of the target path constraint by the path
abstraction of its precursors. It’s simpler and easier to solve for the
simplified target path constraint than the original one. If the simpli-
fied path constraint can not be satisfiable, the target path constraint
must not be satisfiable, and the current path is unreachable. If the
simplified path constraint can be satisfied, then it can reduce the
solution space of the target path constraint.
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Wewill use pc(p) and p̂c(p) to indicate the path constraint and its
path abstraction on pathp, andp=p1+p2, wherep1, p2 indicates the
prefix and the remaining path, respectively. Before solving pc(p),
we will solve the simplified constraint abstracted by the existing
prefix path, that is, p̂c(p1) ∧ pc(p2). In general, it’s less complex for
the simplified form than the original form, so it’s easier to solve. If
p̂c(p1)∧pc(p2) is unsatisfiable, the path can be pruned immediately,
because pc(p1)∧pc(p2)must be unsatisfiable. Else, if p̂c(p1)∧pc(p2)
is satisfiable, we will continue to solve p̂c(p1) ∧pc(p1) ∧pc(p2), that
is, p̂c(p1) ∧ pc(p). Although it seems more complex than pc(p), it’s
actually much easier to solve because the path abstraction p̂c(p1)
reduces the solution space of the path constraint. Since the path
abstraction contains the calculated linear expressions that appear
in the path constraint, the connection between the path constraint
and the path abstraction directly reduces the input’s search space
to solve.

3.3 Directed Fuzzing
3.3.1 Distance Calculation. Distance calculation is the core of the
DGFs. We will list the function distance, basic block distance and
the seed distance calculation in the following.

Function distance. The function distance between n and n′ is
defined as the shortest distance between the two functions on the
CG. As in formula 1, the function distance of the function n (i .e . Df )
is defined the harmonic mean of the function distance between the
function n and the reachable target function Tf .

Df

(
n,Tf

)
=

{
unde f ined, i f no path f rom f to Tf
d, otherwie

(1)

where, d is the harmonic mean between f and all the reachable
objective functions Tf .
Basic block distance. The target distance at the basic block level,
Dbb (m,Tb ), is defined as the distance from each block m to the
target blockTb . It can be calculated across different functions, which
are defined as the harmonic average of each function that calls the
block.

Dbb (m,Tb ) =


0 i f m ∈ Tb

c · min
n∈(m)

(
Df

(
n,Tf

))
i f m ∈ T[∑

t ∈T (Dbb (m, t) + Ddd (m,Tb ))
−1]−1 otherwise

(2)
where, N (m) is the set of the function that calls the basic block m,
T is the set of basic blocks included in the function that calls m, and
c is set to 10.

Seed distance. The seed distance is defined as the average of
the distances between each executed basic block and the target:

distseed =

∑
m∈N (seed ) Dbb (m,Tb )

|N (seed)|
(3)

where, N (seed) is the set of the basic blocks the seed seed executes
and it has one path to the target block Tb .

3.3.2 Directed Fuzzing Algorithm. Algorithm 2 describes the pro-
cess of the directed fuzzing and the differences from the AFL are
underlined. To start the fuzzing, directed fuzzing firstly applies each
initial input I on P, recodes the corresponding execution trace and
calculates the distance between each input and the target according

to the execution trace (line 2). The same procedure is performed for
each variant input i’ (line 7). If the execution reaches T, that is, the
distance between i’ and T is 0, then i’ will be added to H (line 8 and
9). At the beginning of the fuzzing, the directed fuzzing will sort the
inputs in the queue according to the distance between each input
and the target in order to ensure the input closer to the target can
be mutated earlier (line 4). If the execution trace of the variation
input covers new branches or hits one branch more than one time,
the variation will be added to the queue I. To Ensure the input with
shorter distance to the target branch can still be mutated earlier, the
directed fuzzing will insert each newly generated and interesting
variation input to the position after i in the queue I in ascending
order of their distance in order to make i’ can be selected quickly
and can be mutated in the subsequent internal loop iteration. Each
time the queue traverses the tail, it will sort the queue again (line
11). Because the insertion operation only guarantees that the newly
generated input will be inserted after its parent input by distance,
so the entire queue may be unordered after the insertion.

Algorithm 2 Improved Directed Fuzzing Greybox Fuzzing Algo-
rithm
Input:P: binary program, I: initial seeds, T: target site(s)
Output:H: set of inputs that can reach T in P; B: crashing-inputs set
H = ∅;
1. for i in I do
2. d ← run_tarдet(P ,T , i)
3. while timeout not excedded do
4. I ′ ← sort_by_distance(I ,d)
5. for i in I ′ do
6. i ′ =mutate_input(i)
7. d ′ ← run_tarдet(P ,T , i ′)
8. if d ′ == 0 then
9. H = H ∪ { i ′}
10. if is_interestinд(i ′) then
11. I = I ∪ {i ′}
12. if triддer_crash(i ′) then
13. B = B ∪ {i ′}
14. i = next(I ′, i)
15. end for
16. end
17. return H, B

4 IMPLEMENTATION AND EVALUATION
4.1 Implementation
HDBFuzzer is implemented based on the AFL(2.52b), QEMU(2.10.0),
IDA Pro(v7.5) and QSYM. IDA Pro is used to extract the ICFG and
calculate the distance. AFL-QEMU is modified to trace the covered
targets and calculate the seed score and the energy scheduling
function dynamically. When AFL-QEMU encounters a branch that
is difficult to cover, HDBFuzzer will call the Z3’s SMT-opt algorithm
to calculate the path abstraction and solve the branch. Information
such as target location, time budget and fuzzing status are shared
between AFL and QSYM. All the tools in this paper will use the
same empty file or the valid file provided by the developer as the
initial seed.
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Table 2: LAVA-M Bugs Found by Different Fuzzers

Tools base64(44 bugs) md5sum(57 bugs) uniq(28 bugs) who(2136 bugs) total(2265)

AFLGo-B 16(36.36%) 35(61.40%) 15(53.57%) 1058(49.53%) 1124
QSYM 44(100%) 57(100%) 28(100%) 1353(64.42%) 1482
HDBFuzzer 44(100%) 57(100%) 28(100%) 2018(94.48%) 2147

Settings. Following the evaluation criteria in the literature [14],
the same fuzzing configuration and hardware resources configura-
tion are used for all the experiments in this paper. All experiments
are conducted on an assembled Linux desktop equipped with In-
tel(R) Core(TM) i7-8700K CPU @ 3.70GH, 12 virtual cores, 16GB,
Ubuntu 16.04, with python 3.7.

Baseline fuzzers. As shown in Table 1, only AFLGo [6], Driller
[8], QSYM [9] and ParmeSan [11] in existing DGF and hybrid
fuzzing tools are open-sourced. However, AFLGo and ParmeSan
are both source code-oriented, and ParmeSan relies on source code-
level memory address sanitizer to extract target sites, which is
difficult to change it to support binary programs due to the lack of
effective binary memory address sanitizer at present. Therefore, we
select AFLGo-B (we rewrite the AFLGo to support binary program)
and QSYM (which has been shown to be superior to Driller) as the
baseline fuzzers to compare with HDBFuzzer.

Dataset and Evaluation Criteria. To evaluate the effective-
ness of the fuzzers, we conduct experiments on the widely used
LAVA-M dataset [15] and some real-world programs to evaluate the
vulnerability discovery, bug reproduction and target reachability
capabilities. In this paper, we use TTE (time-to-exposure, the first
time finding the input that triggers the bug) and the success runs
when the input triggers the bug to evaluate the bug reproduction
capability of the fuzzers. And we use TTR (time-to-reach, the first
time reaching the target site) to evaluate the target reachability of
the fuzzers. The smaller the TTE and the more success runs, the
better the fuzzer. The smaller the TTR, the better the fuzzer.

4.2 Evaluation
4.2.1 Bug Discovery and Bug Reproduction on LAVA-M Dataset.
LAVA-M dataset is an artificial evaluation dataset for bug detection.
There are many complex bugs in this dataset and most fuzzing
tools use this dataset to evaluate the performance of their proposed
methods. In the LAVA-M dataset, each bug corresponds to a unique
identifier. When the bug is triggered by a fuzzer, it will print its
identifier to count the number of specific bugs triggered by the
fuzzer. As shown in Table 2, there are four programs in LAVA-M
dataset, uniq, base64, md5sum and who, respectively.

We list the number of real bugs contained in each program (line
1) and the number of bugs found by different fuzzers (line 2-4) in
Table 2. As it shows, HDBFuzzer and QSYM both find more bugs
than AFLGo-B on all the four programs. This is because many
bugs in LAVA-M dataset are protected by magic bytes branches
with computational features such as “5x+1==0xdeadbeaf”, whose
input needs to be computed. Compared with simple branches that
don’t need computation such as “x==0xdeadbeaf”, such branches
are difficult for AFLGo-B, while for QSYM and HDBFuzzer, it’s
much easier to solve the inputs satisfying such constraints. On

the other hand, we can find in Table 2 that HDBFuzzer finds 665
more bugs than QSYM on who program, because HDBFuzzer can
quickly identify difficult constraints and quickly solve such difficult
constraints based on path abstraction.

Further, we randomly sample two bugs from each of the four
programs in the LAVA-M dataset and set the target site to carry
out directed fuzzing to evaluate the bug reproduction capability of
different fuzzers on the LAVA-M dataset. The results are shown in
Table 3, from which we can conclude that HDBFuzzer is superior
than AFLGo-B and QSYM on all sampled bugs.

4.2.2 Bug Reproduction and Target Reachability on Real-world Pro-
grams. As stated before, three real-world programs that are widely
used in embedded device firmware are selected: busybox, binutils
and openssl, respectively. We list the version, CVE number, vulner-
ability type, vulnerability location and crash information of each
CVE of the real-world programs in Table 4

We use the total success runs and µTTE (the average of TTEs
collected from ten runs for each sample) to evaluate the bug repro-
duction capability of different fuzzers on real-world programs and
µTTR (the average of TTRs collected from ten runs for each sample)
to evaluate the target reachability of different fuzzers. As shown
in Figure 4, HDBFuzzer is superior to AFLGo-B and QSYM in the
total success runs and the total number of true crashing-inputs.
By analyzing the total µTTE and the total µTTR of all the tests,
we find that HDBFuzzer behaviors the best, followed by AFLGo-B
and QSYM, QSYM behaviors the worst, which demonstrates the
capability of the directness of HDBFuzzer.

5 CONCLUSION
In this paper, a target-oriented hybrid directed binary fuzzer (HDB-
Fuzzer) is proposed to solve the vulnerability confirmation problem
based on binary code similarity matching. Its core idea is to use
DGF to carry out high-speed fuzzing test towards the target site(s),
and at the same time adopts concolic execution to assist solving
some complex constraints on the target path to the target site(s)
to generate inputs that can pass through some specific complex
branches for DGF. Compared to the traditional hybrid fuzzer, HDB-
Fuzzer is a binary-oriented, target site(s)-driven, hybrid directed
fuzzer, whose aim is to generate input that can reach the target
site(s) as quickly as possible, so as to focus resources on fuzzing
vulnerable code region to confirm whether there is a true vulnera-
bility in the vulnerable code region. The results of the evaluation on
the LAVA-M dataset and real-world programs related with 10 CVEs
show that HDBFuzzer is superior to the state-of-the-art AFLGo-B
and QSYM on the bugs founded, bug reproduction capability and
target site reachability, which depends the ability of its directness
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Table 3: Bug reproduction of Different Fuzzers on LAVA-M Dataset

TTE(min)Program AFLGo-B QSYM HDBFuzzer
bug1 bug2 bug1 bug2 bug1 bug2

base64 32.43 30.56 21.54 28.23 18.51 20.45
md5sum 14.31 16.71 12.56 14.34 9.67 10.56
uniq 31.45 29.81 30.14 28.54 20.81 18.35
who 52.53 59.82 46.23 50.12 49.34 51.3

Table 4: Real-world Programs and CVE Information

program version CVE type position crash

binutils 2.25.1 CVE-2016-4489 integer overflow gnu_speical, libiberty/cplus-dem.c ✓
binutils 2.25.1 CVE-2016-4492 integer overflow do_type, libiberty/cplus-dem.c ✓
binutils 2.32 CVE-2019-14444 integer overflow apply_relocations(), readelf.c ✓
busybox 1.21 CVE-2016-6301 deny of service recv_and_process_client_pkt, networking/ntpd.c ✓
busybox 1.27.2 CVE-2017-15873 integer overflow get_next_block,

archival/libarchive/decompress_bunzip2.c
✓

busybox 1.27.2 CVE-2015-9261 buffer overflow huft_build, archival/libarchive/decompress_gunzip.c ✓
openssl 0.9.8 CVE-2014-3508 buffer overflow OBJ_obj2txt, crypto/objects/obj_dat.c ✓
openssl 1.0.1f CVE-2015-0290 deny of service ssl3_write_bytes, s3_pkt.c ✓
openssl 1.0.1f CVE-2016-2180 buffer overflow TS_OBJ_print_bio, crypto/ts/ts_lib.c ✓
openssl 1.0.1f CVE-2016-2842 buffer overflow doapr_outch, crypto/bio/b_print.c ✓

Figure 4: Bug Reproduction and Target Reachability of Different Fuzzers on Real-world Programs.

and its efficient constraint solving based on path abstraction. How-
ever, HDBFuzzer only supports x86 binaries now. In the future, we
will improve HDBFuzzer to support binaries in ARM and mips.
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